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Abstract

The potential for reliably solving vibration response problems by using h- and p-versions of the finite
element (FE) method is investigated. Each FE model is based on full three-dimensional (3-D) displacement-
based continuum theory. Special attention is given to the ability to handle thin and/or nearly
incompressible elastic and viscoelastic materials. Steady-state time-harmonic problems in the low- and
mid-frequency ranges are treated. Convergence studies are performed on plate-like model problems with
simply supported boundary conditions, using a series elasto-dynamic Navier solution extended to the
viscoelasto-dynamic case by means of the elasto-viscoelastic correspondence principle. The importance of
eliminating the discretisation error when using numerical solutions to estimate the frequency-dependent
viscoelastic material parameters from experiments is stressed.

The superior efficiency of p-enrichments compared to h-refinements for resolving regular elastostatic
solutions is observed in elasto/viscoelasto-dynamics as well. Requirements on p-enrichments to avoid shear-
and volumetric locking are given. The frequently used polynomial interpolation functions employed are
shown to produce a mass contribution to the dynamic stiffness, whose condition number deteriorates with
increasing polynomial order. The practical implications and limitations of this observation are outlined.
The recommended approach is corroborated using the measured frequency response on a laminate
consisting of two aluminium plates and a constrained viscoelastic polymer damping treatment.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Broadband high-frequency vibration analysis is important in many engineering applications.
Traditionally, finite element (FE) models are based on low-order element interpolation and
element h-refinements in order to get an accurate solution. However, this approach is limited to
low-frequency analysis. The low-frequency range involves perhaps the first few 10 resonances and
the vibration response is normally well predicted by using the standard h-version of the finite
element method (FEM). Relying on the h-version FEM to solve vibration frequency responses
leads to impractical mesh densities at sufficiently high frequencies in order to fulfill the Nyquist
sampling theorem [1]. Today, high-frequency models are most often based on statistics and energy
considerations. These approaches have other objectives, which are out of the scope of the present
paper. A useful review of current analysis capabilities of mid- and high-frequency vibration
predictions may be found in Ref. [2].
In order to manage mid-frequency FE analysis, alternative approaches need to be and can be

adopted through an optimal use of element degrees of freedoms. The p- and hp-versions of the
FEM offer such possibilities [3]. For a general presentation of the so-called higher-order FEMs,
see Refs. [3,4]. These methods can advantageously be combined with a posteriori error estimation
[5,6] upon which advanced automatic self-adaptive mesh refinement algorithms can be built [7].
The hp-version FE methodology can also alleviate locking problems encountered in traditional
h-version FEM [8–10], and is thus a suitable candidate for solving also viscoelasto-dynamic
problems, including nearly incompressible cases and cases involving thin layers.
The proper choice of the interpolation function set is of central importance in solving different

problems with the hp-version FEM. It was soon realised that the use of a hierarchical
interpolation function set, like the Legendre polynomials, is favourable in the sense that the
functions with order p is a subset of order p þ 1 so that previously calculated orders of the mass
and stiffness are untouched, which makes the process of approximation enrichment significantly
faster. In addition, application-specific-type interpolation functions and improved integration by
fast quadrature may also be utilised [11,12]. The usual polynomial set is less effective at higher
frequencies as certain computational and numerical problems prevent the use of very high-order
polynomial functions [13–18]. The trigonometric hierarchical interpolation function set offers
better numerical stability at higher frequency. Beslin and Nicolas [14] use a 2-D trigonometric
interpolation function set to calculate 800 eigenvalues with an error of less than 2%. The major
disadvantage with this approach is that convergence at low-mode frequencies is not as good as for
the polynomial interpolation set. A mixed polynomial and trigonometric interpolation function
set is recommended for broadband frequency analysis [13,15,17]. The polynomial shape function
set is used to describe element vertex degrees of freedoms and the trigonometric set is used to give
additional freedom to the edge faces and the interior of the element. With proper use, the overall
savings in computational cost is substantial and the next generation of commercial FEM codes
will most likely be based on an hp-adaptive FEM methodology.
In the present paper, we restrict ourselves to a 3-D polynomial interpolation function set and

low- to mid-frequency vibration response analysis, with damping included.
The modelling of damped linear systems considered here rests on the traditional three-

dimensional (3-D) linear solid viscoelastic theory [19,20]. In practical applications, however,
constant loss-factor models are often used for simulation of vibration responses despite the fact
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that the material is highly frequency dependent and insufficiently represented by such a simple
model. One explanation to the use of such oversimplified models could be lack of material data
needed for damped materials like polymers and rubber. Another explanation may be that 1-D and
2-D approaches are still most common in vibro-acoustic applications. Moreover, only a few
commercial FE code implementations are available for solving fully 3-D viscoelasto-dynamic
problems. The 3-D approach, adopted in this paper, is strongly motivated by the fact that it is
important to account for the 3-D state of stress and deformation in joint structures also at rather
low frequencies [21]. These effects are especially important near boundaries and joints.
The process of experimental material damping estimation (Section 4) may also benefit from the

use of hp-version FEM, suppressing the influence of discretisation error and providing means
for optimal use of the degrees of freedoms. The process can be separated into two major parts:
(a) estimation of discrete values of both real and imaginary parts of the material damping
functions at each resonance frequency in the frequency interval of interest; (b) estimation of the
viscoelastic model parameters. Modal models have been shown to be useful in material damping
estimation [22–27]. To avoid truncation errors and modal coupling influence, an iterative
estimation procedure using direct FE calculations with a general 3-D vibration response model
proves favourable [28]. The use of direct FE is relatively computationally intensive. In estimation,
however, these models are relatively small and only a few calculated frequencies are needed. In the
second estimation step, the material damping function amplitudes are directly estimated by using
the least-square damping approximation method, proposed in Ref. [24].
The major aim of this work is to put forward engineering guidelines for using a pure displacement

solid continuum based approach for accurate and reliable numerical FEM simulations of 3-D time-
harmonic linear viscoelasto-dynamic response problems in the low- and mid-frequency range. Special
focus is put on guidelines for avoiding possible shear- and volumetric locking, by using proper
enrichments of the polynomial interpolation order p. The p-version-type research code STRIPE used
throughout here is referenced in Refs. [3,29] and further described in references therein.
One challenging practical target application is the modelling of the dynamic response of

stiffened laminates, built up by thin layers of which some may be made of nearly incompressible
linear viscoelastic materials (cf. Section 4).
The efficiency of p-enrichments compared to h-refinements is investigated for a given accuracy

in the energy norm, in Section 3. The Nyquist sampling theorem requirements are investigated
when using the p-version FEM approach. The polynomial interpolation functions often used will
produce a mass-matrix contribution whose condition number deteriorates the dynamic stiffness
with increasing polynomial order. This effect is investigated and practical implications and
limitations of these observations are examined to find guidelines for required p-enrichments in
order to avoid numerical problems.
2. Model problem formulation

2.1. The linear viscoelasto-dynamic vibration model problem

Consider the 3-D problem of finding the displacement field ~uðx; sÞ at a point x, given in
Cartesian coordinates, in a Lipschitz domain, O � R3; subjected to tractions g on the boundary
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qO of O; with no body forces present. Here, s ¼ i2pf is the Laplace variable, i2 ¼ �1 and f is the
current frequency of vibration. The frequency domain Cauchy’s first equation of motion is given
in variational form as
Find ~u 2 V 2 H1ðOÞ �H1ðOÞ �H1ðOÞ such that

Bð~u; ~vÞ ¼ F ð~vÞ 8~v ¼ V, (1)

where u, v are test functions in the Sobolev space H1, B and F are sesquilinear and antilinear
forms, respectively, defined as

Bð~u; ~vÞ ¼

Z
O
sð~uÞ : ~�ð~v
ÞdOþ s2

Z
O
r~u � ~v
 dO, (2)

Fð~vÞ ¼

Z
qO

~g � ~v
 dqO; (3)

where * corresponds to a complex conjugate. The constitutive behaviour is modelled in the
frequency domain by using a linear solid viscoelastic model, ~sðsÞ ¼ CðsÞ : ~�ðsÞ:
The stresses ~sij ¼ ~sji and infinitesimal strains ~�kl ¼ ~�lk are symmetric second-order tensor fields

with the strain–displacement relation, given as ~�ð~uÞ ¼ ½ðr � ~uÞT þ r� ~u�=2; where r is the usual
gradient operator and � is the dyadic product.
The solid viscoelastic model is defined by using Na discrete relaxation processes. Each one is

characterised by an internal tensorial strain field variable �a
nðx; tÞ and a corresponding modulus

stiffness matrix Ca
nðx; tÞ: For this model, the stress response in s x; tð Þ is defined by a 3-D

constitutive relationship, where the initial (instantaneous, elastic) modulus stiffness matrix C0 is
such that the strain energy � � C0�40 for an arbitrary �: Each internal variable field �a

n is governed
by the following evolution equation _�a

n ¼ 1=tnð�� �a
nÞ; where each relaxation time tn40 and the

reference time, initial condition for vanishing internal strain �a
n; is set to limt!0 �a

nðtÞ ¼ 0: The long-
term elastic, fully relaxed, generalised Hooke’s law modulus (a fully symmetric) fourth-order
tensor C1 is defined to characterise all linear solids such that � � C1�40 8�: The relation between
the long-term elastic or fully relaxed modulus C1 and the instantaneous modulus is C0

¼

C1
þ

PNa

n¼1C
a
n: Throughout this work a discrete relaxation spectrum is employed. The

corresponding Laplace transformed (frequency domain) constitutive relation reads

~sðsÞ ¼ C1
þ
XNa

n¼1

s � Ca
n

s þ bn

" #
: ~�ðsÞ ¼ C1

þ CaðsÞ½ � : ~�ðsÞ ¼ CðsÞ : ~�ðsÞ, (4)

where bn; n ¼ 1; 2; 3; . . . ;Na; are real positive relaxation frequencies with relaxation times tn ¼

1=bn: For connections with the so-called AHL theory, see Ref. [23].
An isotropic viscoelastic solid is defined by two independent moduli. Making use of the elasto-

viscoelastic correspondence principle, we obtain CaðsÞ ¼ dGðsÞ � GCG þ dlðsÞ � lCl; where non-
zero components are ðCGÞii ¼ 1; i; kp3 and ðClÞik ¼ 2; 1pip3; ðCGÞii ¼ 1; 4pip6: For Na

discrete relaxation processes, the isotropic material functions become dGðsÞ ¼
PNa

n¼1A
nð Þ

G � s=ðbn þ

sÞ and dlðsÞ ¼
PNa

n¼1A
ðnÞ
l � s=ðbn þ sÞ; respectively, where A

ðnÞ
G and A

ðnÞ
l are real process amplitudes

with corresponding real positive relaxation frequencies bn; n ¼ 1; 2; 3; . . . ;Na: Material functions
for other material symmetries may easily be constructed by using the elasto-viscoelastic
correspondence principle, cf. [19,20,25,26].
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2.2. Frequency domain FE equations of motion and the associated eigenvalue problem

The solution to Eq. (1) may be approximated by a discrete set of equations using the FEM and
a sequence of FE spaces, VN � V: The discrete problem becomes: find ~uN 2 VN satisfying,

Bð~uN ; ~vÞ ¼ F ð~vÞ 8~v ¼ VN , (5)

with Bð�; �Þ and Fð�; �Þ given by Eqs. (2) and (3), respectively. The error of approximation is
measured in the following energy-type norm, the Sobolev H1 norm:

~ek k2
VN �

Z
O

~�� ~�N
�� ��2 þ ~u� ~uN

�� ��2 dO; (6)

where ~e ¼ ~u� ~uN is the difference between the exact solution on strong form and a given FE
approximation uN to Eq. (1). See Ref. [6], for existence and uniqueness issues.
The steady-state-harmonic-forced frequency vibration response is obtained by direct solution of

the FEM discrete equations of motion for a structure, with linear viscoelastic material properties,
defined as

½Ke þ s2Mþ KaðsÞ� ~UðsÞ ¼ ~FðsÞ; KaðsÞ ¼

Z
O
BTCaðsÞBdO; (7,8)

where M; Ke and KaðsÞ are the usual mass, stiffness and complex frequency-dependent viscoelastic
stiffness matrices corresponding to the global, generalised displacement degrees of freedom ~U;
while ~F is the corresponding global load vector, calculated by using an hp-version FE technique in
a 3-D domain setting. B in Eq. (8) is the standard strain–displacement operator.
The corresponding eigenvalue value problem, given by elastic stiffness and mass matrices, is

defined as

Ke þ lmM½ �Cm ¼ 0; CT
mMCm ¼ dmn, (9,10)

where lm is the eigenvalue (related to the eigenfrequency by o2
m ¼ lm) and Cm is the associated

eigenvector, corresponding to a non-trivial solution to the equation system (Eq. (9)). The
eigenvalue is a measure of the elastic modal strain energy and the error in the eigenvalue may be
shown to be closely related to the square of a corresponding energy norm [3].
The set of modes is also the basis for the so-called modal analysis and forced vibration

frequency response simulation by using modal superposition, cf. [22].
We use the p-version of the FEM to realise Eqs. (7) and (8), which enables us to effectively

control the discretisation error by choosing an initial mesh (h-refinement) and then vary the
polynomial (p-) enrichment. The continuum p-version hexahedral element in STRIPE used here
may be described as follows. Usual Lagrangean nodal shape functions of second order are used to
describe the geometry. Hierarchical polynomial basis functions of the Peano type [30,31] are used
to describe the displacement. The polynomial order p may be between 1 and 15. Here, a spatially
isotropic polynomial order is used in R3; that is, p ¼ p1 ¼ p2 ¼ p3: Spatially anisotropic p-
enrichments are possible and may be used to gain efficiency or to enforce a Mindlin-plate-type
behaviour, see for example, Ref. [32].
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3. A numerical study of simply supported flat plates

Vibration analyses of a number of realistic plates are used to show certain aspects of FE
discretisation error control in terms of both elastic dynamic properties, that is, eigenvalues, and in
terms of damped forced vibration frequency responses. An analytic 3-D series solution, cf. [33,34]
and Appendix A are used to study the convergence between the exact solution and the FE
approximation, with respect to variations in a priori h-refinements and p-enrichments. The
percentage relative error is measured in the energy-type norm, Eq. (6). Simply supported
boundary conditions are used throughout. The following elastic material data for Polymethyl-
methacrylate (PMMA) are used in the study: EPMMA ¼ 3440MPa, nPMMA ¼ 0:382 and rPMMA ¼

1181kg=m3:
3.1. Elasto-dynamic analysis of a simply supported PMMA plate

In this section, eigenvalue analyses are used to investigate the convergence of the eigenvalues
using different uniform polynomial approximations p and uniform h-refinements. For this
purpose, a PMMA plate is used with simply supported boundary conditions and dimensions
1000� 1000� 10mm3:
In Fig. 1, the convergence of FE approximated eigenfrequencies versus mode number is

displayed for different orders of p using a 2� 2 element FE model. The result obtained by the
analytical 3-D series solution is also plotted (an almost straight line in Fig. 1) for comparison. The
results in Fig. 1 clearly show that it is possible to calculate only a few eigenvalues with reasonable
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accuracy by using the 2� 2 element FE model, and p equals 5. However, we may calculate more
than 100 eigenvalues with a fairly good accuracy by using p equals 14.
In order to display the effect of using uniform p-enrichments, the number of converged

eigenvalues are plotted in Fig. 2 versus the number of degrees of freedoms used for different levels
of tolerance. For comparison, the exact 3-D eigenfrequencies are also given in Table 1 for a
selected number of wave numbers. Take mode number 90, for example. It has an eigenfrequency
of 1047Hz and modal wave numbers (8, 8), which equals four displacement wavelengths along
each side of the plate; in other words, exactly two displacement wavelengths per FE. This mode
frequency can be predicted within a tolerance of 2.5% (5% in eigenvalue) by using the FE model
and a uniform p-extension equals 14. It is thus possible to resolve at least two displacement
wavelengths in each element. An approximate upper frequency limit is given at 1615Hz, for the
2� 2 element FE model with p values in the interval 2ppp14; with a chosen engineering
tolerance of 10% in relative error in eigenfrequency. This eigenfrequency corresponds to the
eigenmode wave numbers (10, 10) and 2.5 wavelengths per element. This limit value is well below
the value of 0.10, normally recommended in standard engineering FE applications. Note here also
that (cf. Fig. 2) a tolerance of 8% in eigenfrequency (om=2p) corresponds to a tolerance of
approximately 15% in eigenvalue lm:
It is well known that a high order of polynomial interpolations may cause a large condition

number, which results in numerical problems and uncertainty in the solution. This may be one
possible source of decreased rate of convergence for the 1% tolerance level, observed in Fig. 2.
For this purpose we investigate the condition number of an unconstrained positive definite FE
mass matrix. The result is translated and plotted in Fig. 3, in terms of expected number of
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Table 1

Exact 3-D eigenfrequencies for the PMMA platea

Mode number m Wave numbers i, j Eigenfrequency (Hz)

1 (1, 1) 16.7

4 (2, 2) 66.9

11 (3, 3) 150

20 (4, 4) 266

32 (5, 5) 415

48 (6, 6) 595

67 (7, 7) 806

90 (8, 8) 1047

115 (9, 9) 1317

143 (10,10) 1615

aWith simply supported boundary conditions.
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16� log10ðcondðMðpÞÞÞ:
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significant figures in the solution. It is clear that the use of p48 for an unsupported (free)
structure is not meaningful. However, this boundary condition represents the worst case and
consequently a better condition number is expected for other types of boundary conditions.
Finally, convergence plots are displayed for eigenmode number one in Fig. 4, and for

eigenmode number 19 in Fig. 5. The solution is in this case regular and it is possible to reach the
exponential convergence by using only p-enrichments. In the convergence plots, in Figs. 4 and 5,
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the h-refinement is uniform only in the plane of the plate. Two elements across the thickness are
used throughout the study. The rate of convergence observed is thus slightly better than algebraic
for uniform refinement in the plane of the plate. Fig. 5 shows that for any given accuracy, the
p-enrichments are more efficient than h-refinements in terms of degrees of freedoms spent. This is
coherent with theoretical and numerical observations in elastostatics for regular solutions [3]. A
factor 40 is gained (Fig. 5) in terms of degrees of freedom spent compared to using uniform
quadratic interpolation functions (p fixed at 2) already at a chosen accuracy of 10�1.

3.2. Numerical locking problems in elasto-dynamics

It is well known that locking may cause serious problems in 3-D structural modelling using
linear or quadratic FEs. The locking occurs when certain parameters tend to limit values, as for
example, shear locking in thin domains or volumetric locking for nearly incompressible material.
Locking problems are most often handled by using alternative variational formulations or
reduced constraint methods [8,9]. It is also known that by using certain p-version elements it is
possible to alleviate this problem [35]. Complete locking with the h-version FEM may occur in
highly anisotropic domains, cf. [8]. One of the important issues in this section is to investigate
(numerically) how locking effects can be alleviated in dynamics, by using higher-order polynomial
interpolation functions [8–10]. It is recalled that the locking effect in general is a global property.
Moreover, the conditioning number of the global system matrix may be even worse when using
many elements, due to cancellation in the assembly process.

3.2.1. Shear locking in thin domains [36]

The numerical approximation of bending and shear dominated vibrations of thin plate- or
shell-like domains may lead to shear locking when the thickness h is small. The standard
procedure here is to change from a full 3-D continuum formulation to an approximate 2-D plate
or shell formulation. In this paper, we numerically investigate the practical upper bound of the
length to thickness aspect ratio for the 3-D continuum formulation, as it is important to account
for 3-D effects near boundaries and joints. For this purpose only the elasto-dynamic problem is
studied. In order to investigate the effects of shear locking, a set of thin plate-like structures is
used with length to thickness aspect ratios given as a=h ¼ f 101 102 103 104 g: The relative
error in the first eigenvalue for the plate is calculated with different splits into four new elements
using quadratic elements in each new level (so-called uniform h-refinement in the plane). The
results from calculation of the relative error in the first eigenvalue for the 32� 32� 2 elements FE
model for different length to thickness aspect ratios (a/h) are plotted in Fig. 2. This FE model,
with 32� 32� 2 elements, is chosen in order to have a small discretisation error starting at p
equals 2, while avoiding certain other numerical problems described in Section 3.1. With p equals
2, the error is fairly stable (Fig. 6) with respect to the a/h ratio up to 1000. However, and more
importantly, from the dashed line in Fig. 8 it is obvious that uniform h-refinements with p ¼ 2 will
not converge at all. Improvement of the solution accuracy beyond 0.1% error may only be
achieved by increasing the polynomial degree of the interpolation. The ultimate inhibition of h-

convergence is here attributed to the so-called shear locking. The locking occurs when certain
parameters tend to limit values, as for example shear locking in thin domains or volumetric
locking for a nearly incompressible material. In terms of stresses or strains it may be even worse
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[8,9]. However, there is an upper limit for which the pure displacement-based p-version FEM is
effective in handling the thin domain locking problem using 3-D continuum theory. According to
Fig. 6, a/h should not exceed 1000 in practice.

3.2.2. Volumetric locking or Poisson locking [36]
One way to overcome volumetric locking problems in computations involving nearly

incompressible materials is to use a mixed two field, pressure and displacement, variational
formulation [9,10]. Such formulations provide means for constructing locking-free elements not
only with respect to displacements but also with respect to stresses. In order to investigate the
effects of volumetric locking, a set of plates with dimensions 1000� 1000� 10mm3 and different
values on the Poisson’s ratio n ¼ f0:40 0:49 0:499 0:49999 0:499999 0:49999999 0:499999999g
are studied.
If we compare the result in accuracy of the first eigenvalue with respect to variations in

Poisson’s ratio, it is rapidly lost for each decimal 9 that is added. Each additional decimal figure
on Poisson’s ratio results in approximately one lost figure on the accuracy in the solution,
according to Fig. 7. The first eigenvalue of a plate is clearly affected by locking when using
Poisson’s ratio n ¼ 0:49999999: The result in Fig. 9 shows the accuracy in the first eigenvalue
versus number of degrees of freedom for different values of p (see Figs. 8 and 9). The convergence
properties for nearly incompressible materials show a global tendency that is very much like those
found for thin domain locking, described in Section 3.2.1. The locking effect is a global property
and the conditioning number of the system matrix may be even worse, by increasing the
cancellation effect in the assembly process when using h-refinement. This effect is visible in Fig. 9
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with an increasing relative error with respect to two h-refinements (dashed line). The only
possible way to alleviate the locking converge is to balance the number of elements and the
order of interpolation. For the 32� 32� 2 element FE model, with n ¼ 0:49999999; there is no
gain in solution accuracy from increasing the interpolation order p. Also in this case, there is a
practical upper limit for which the pure displacement-based p-version FEM is effective in
handling the volumetric locking problem by p-enrichments. Our results in Figs. 7 and 9 indicate
that Poisson’s ratios should not be closer to one half than 0.499999 when considering this
approach.

3.3. Forced vibration frequency response of a viscoelastic simply supported plate

In a locking-free setting, the smoothness of the solution is the most important contributing
factor to the rate of convergence. In the case of forced frequency response of real-life damped
structures, the FE solution will in general be irregular due to sharp corners, edges and other
geometric singularities. Boundary conditions, loadings and material discontinuities are other
sources for solution irregularities. The case considered in this section includes a load singularity
caused by a spatially constant distributed load applied over a rectangular area. In the present
analysis, only non-optimal uniform h-refinements in the plane are used. Only uniform p-

enrichments are used, which are also non-optimal in the presence of singularities. In order to
handle the general case, including singularities, an hp-adaptive approach including a posteriori
error estimation will be needed in order to obtain optimal (exponential) convergence rates.
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Table 2

Estimated viscoelastic damping parameters for PMMA

Damping process number n Relaxation frequency bn ðHzÞ Process amplitude A
ðnÞ
G Process amplitude A

ðnÞ
l

1 1.59� 10�1 2.23� 10�1 0.0

2 2.26� 10�1 2.21� 10�1 0.0

3 8.21� 101 3.27� 10�2 0.0

4 3.14� 102 1.00� 10�4 0.0

5 1.59� 10�1 1.32� 10�1 0.0
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A simply supported 1000� 1000� 10mm3 PMMA plate, with material data given in Ref. [25]
and Table 2, is used to show some aspects of discretisation error control. The excitation applied to
the PMMA plate is given by a distributed 250� 250mm2 unit pressure load excitation at position
xe ¼ f375 375 0gmm; with respect to the lower left corner of the plate. A typical vibration
frequency response function (FRF) for the PMMA plate in the frequency interval 1–1000Hz, at
point x ¼ f540 180 0gmm; is shown in Fig. 10, using a 4� 4 element mesh with varying orders of
polynomial degree of approximation (2, 3 and 6). With the 4� 4 mesh, when p equals 2 it is only
possible to simulate the frequency response up to approximately 50Hz, which includes the first
visible resonance. The use of polynomial degree p ¼ 6 may be justified up to approximately
500Hz. In order to cover the entire frequency interval 1–1000Hz using the 4� 4 mesh, it is
necessary to use a p value equal to 9. In this case there is no longer any visual difference between
the exact 3-D solution and the FE approximation. The mean relative difference in magnitude
FRF is 0.12% and the standard deviation is 0.20%. Also, note that an accurate prediction of the
vibration response solution at each anti-resonance frequency is very important as these
frequencies correspond to high dynamic stiffness.
A convergence study is also performed on the PMMA plate at three different selected

frequencies 19, 533 and 1047Hz. The first frequency at 19Hz corresponds to the first resonance
frequency. The vibration displacement field is well approximated with all FE models in terms of
the Nyquist sampling theorem. In Fig. 11, the relative error between exact 3-D solution and FE
approximation is given for h-refinements and p-refinements, respectively. The dashed line
corresponds to successive splits into four new elements in the plane using quadratic elements in
each new level (so-called uniform h-refinement). The relative error between the exact solution and
the FE approximation at the first frequency (19Hz) declines rapidly at first and then levels out
completely. This is due to the force singularity described above. For the second and third
frequency, shown in Figs. 12 and 13, the situation is different. The rate of convergence is not
retarded as for the first frequency. The solution error is composed of discretisation error and
numerical error, due to the finite precision arithmetic. Using non-optimal h-refinements and
p-enrichments, respectively, it is likely that we observe a growing numerical error with increasing
p-order. It is also observed that the condition number of the dynamic stiffness matrix increases
rapidly with increasing p-order and the numerical error may become visible for larger p-values.
The results from the convergence studies at 533 and 1047Hz, in Figs. 12 and 13, show that
for vibration problems there is a very large potential in computational cost saving by using
the p-version FEM. In Fig. 13, the decrease in error does not start until the Nyquist sampling



ARTICLE IN PRESS

0 200 400 600 800 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

M
ag

ni
tu

de
 (

m
/N

)

Frequency (Hz)

Frequency response functions for the PMMA plate (4X4)

p = 2    

p = 6    

p = 9    

Exact 3-D

Fig. 10. Direct frequency response FE calculation for the PMMA plate using different orders of polynomial

approximation (2 dashed, 6 dashed–dotted and 9 dotted line) and two elements through the thickness. The exact

solution is also plotted for comparison (solid line).

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

NDOF

R
el

at
iv

e 
er

ro
r 

in
 n

or
m

 s
qu

ar
ed

 (
%

)

Frequency 19 Hz

4X4 elements  
8X8 elements  
16X16 elements
32X32 elements
64X64 elements
p = 2 (o)     

Fig. 11. Percentage relative error in energy norm between exact forced frequency response solution (at 19Hz) and the

corresponding FE approximation versus the number of spent degrees of freedoms, for different hp-FE models with two

elements through the thickness (4� 4 diamond, 8� 8 square, 16� 16 triangle, 32� 32 star, 64� 64 plus and p ¼ 2

dashed line).

M. Dalenbring, A. Zdunek / Journal of Sound and Vibration 288 (2005) 907–929 921



ARTICLE IN PRESS

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

NDOF

R
el

at
iv

e 
er

ro
r 

in
 n

or
m

 s
qu

ar
ed

 (
%

)

Frequency 533 Hz

4X4 elements  
8X8 elements  
16X16 elements
32X32 elements
64X64 elements
p = 2         

Fig. 12. Percentage relative error in energy norm between exact forced frequency response solution (at 533Hz) and the

corresponding FE approximation versus the number of spent degrees of freedoms, for different hp-FE models with two

elements through the thickness (4� 4 diamond, 8� 8 square, 16� 16 triangle, 32� 32 star, 64� 64 plus and p ¼ 2

dashed line).

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

NDOF

R
el

at
iv

e 
er

ro
r 

in
 n

or
m

 s
qu

ar
ed

 (
%

)

Frequency 1047 Hz

4X4 elements  
8X8 elements  
16X16 elements
32X32 elements
64X64 elements
p = 2         

Fig. 13. Percentage relative error in energy norm between exact forced frequency response solution response (at

1047Hz) and the corresponding FE approximation versus the number of spent degrees of freedoms, for different hp-FE

models with two elements through the thickness (4� 4 diamond, 8� 8 square, 16� 16 triangle, 32� 32 star, 64� 64

plus and p ¼ 2 dashed line).

M. Dalenbring, A. Zdunek / Journal of Sound and Vibration 288 (2005) 907–929922



ARTICLE IN PRESS

2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

F
re

qu
en

cy
 (

H
z)

Polynomial degree (p)

4X4 elements  

8X8 elements  

16X16 elements

Fig. 14. Order of polynomial approximation p needed for a given relative error of 0.01% in forced frequency response

energy norm (at frequencies 19, 276, 790 and 1047Hz) for different h-refinements with two elements through the

thickness (4� 4 ����, 8� 8 circle, 16� 16 star).

M. Dalenbring, A. Zdunek / Journal of Sound and Vibration 288 (2005) 907–929 923
theorem is fulfilled. Using h-refinements with p equals 2 this is achieved at about 35,000 degrees of
freedom. If on the other hand p-enrichments are used instead, it is possible to have a relative error
in norm below 0.1%, using 10,000 degrees of freedoms. If traditional h-version FEM is used, this
level of accuracy would require the use of a vibration model with Oð106Þ degrees of freedom.
Finally, the result in Fig. 14 shows the potential of accurate approximation of the vibration

frequency response at different frequencies using the p-version FEM, with a given level of
accuracy. If we disregard numerical aspects, it is clear that it is highly efficient to increase the
order of the polynomial interpolation function for accurate simulation of vibration frequency
response in an increased frequency range.
4. An experimental case study

4.1. Two aluminium plates bonded by a viscoelastic damping layer

A laminate with previously estimated material data [28] is finally used to show some benefits of
being able to vary the approximation order p. The experimental test plate consists of an
aluminium base plate with dimensions 650� 500� 4mm3 and a smaller centred top plate with
dimensions 450� 400� 2mm3: They are bonded together by a ScotchdampTM SJ-2015X
viscoelastic polymer tape. The elastic material data are given as EAl ¼ 72000MPa; Evisco ¼

0:01MPa; nAl ¼ 0:326; nvisco ¼ 0:4999; rAl ¼ 2795kg=m3 and rvisco ¼ 975 kg=m3: Isotropic
material damping parameters for the ScotchdampTM SJ-2015X viscoelastic polymer are here
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given explicitly by nominal values at room temperature as A
ð1Þ
G ¼ 269; A

ð2Þ
G ¼ 1650; b1 ¼ 200 and

b2 ¼ 3936: The corresponding isotropic complex material damping function is plotted in
Fig. 15 [28].
The vibrations (normal velocities) were experimentally measured in the laboratory using a

Laser–Doppler Vibrometer (LDV). A standard vibration transfer FRF measurement technique is
used. Point receptances formally defined as quotients between the displacement field component
spectra ~uiðx; sÞ in direction i at response point x and corresponding point force component
excitation spectra in direction k at point xe on the boundary qO were recorded. The measurements
were performed at room temperature, 24 1C. Each test plate was suspended during the
measurements, with its face oriented vertically, by two long metal strings attached at the nodal
lines of the first resonance to minimise suspension damping and simulate stress-free boundary
conditions [37]. The non-contacting LDV sensor was chosen in order to minimise the influence of
unwanted mechanical disturbances on the test objects. Excitation was imposed through a push-
rod mounted electrodynamic shaker attached over a small surface centred at the excitation point.
The vibration motion amplitude level, generated by the excitation, is kept much smaller than the
thickness of the test specimen. The input force was applied normal to the surface of the test plate
and measured by means of a standard force transducer, attached (glued) to the structure
according to the setup in Fig. 3.15b in Ref. [37]. The effect of air damping and damping from the
suspension may be neglected, cf. [38]. The laminate is excited by a distributed 15� 15mm2 unit
force spectrum excitation at position xe ¼ f60 180 0gmm; with respect to the lower left corner of
the plate. The FE mesh is shown in Fig. 17 (see Figs. 16 and 17).
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A typical measurement FRF in the frequency interval of 10–500Hz is shown in Fig. 16, for a
randomly chosen point at x ¼ f750 250 10gmm; and FE model simulations using different orders
of polynomial degree of interpolation (2, 3 and 6). When using p equals 2 the visual agreement is
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good up to 200Hz. If the order of interpolation p is increased to 3 the frequency interval is
extended to 300Hz. In order to have a good visual agreement between model simulations and
measured FRF in the whole frequency interval, a p value equals 6 is needed. It is then possible to
accurately simulate the location of anti-resonance at 492Hz also. The mean percentage absolute
value of the relative difference between measured and simulated FRF in the frequency interval is
6%, with a maximum relative difference of 50% obtained at the anti-resonance at 492Hz.
However, it is important to keep in mind that the accuracy in amplitude is here also influenced by
bias error due to the limited dynamic in the measurements.
5. Conclusions and future work

The capability of reliably solving 3-D time-harmonic vibration response problems in the low-
and mid-frequency range using a pure displacement-based p-version FE-methodology is
investigated. 3-D linear elastic and the viscoelastic continuum theories are used throughout. The
ability to reliably model thin-layered structures and nearly incompressible materials is investigated
in particular. Convergence studies are performed using a set of simply supported plate-like
structures. An analytic continuum 3-D series solution due to Navier is used as reference. The
reliability limits given by the pure displacement-based p-version FE-approach are determined
numerically. The approach is shown to be effective for engineering purposes for length to thickness
aspect ratios less than 1000 and for Poisson’s ratios not closer to half than 0.499999. Polynomial
enrichments are the key to the applicability of the pure displacement-based 3-D continuum
approach. In addition to alleviating shear and volumetric locking problems, p-enrichments are, as
expected, shown to be far more effective resolving time-harmonic responses as compared with
standard h-type refinements. Our numerical results show that the Nyquist sampling theorem can be
fulfilled by pure p-enrichments, that is, without a subsidiary condition on h-refinements. The
polynomial approximation order, however, cannot be raised arbitrarily high. The condition number
of the system matrix deteriorates with increasing order p. The mass contribution is shown
responsible: p-orders above 10 are useless. A case study with measured FRFs is used to corroborate
the approach put forward. The test laminate, consisting of two aluminium plates constrained by a
thin viscoelastic polymer damping treatment, includes most of the difficulties addressed. The ability
to suppress and control the discretisation error in viscoelastic material function estimation
procedures is essential for building reliable material databases. The proposed approach can readily
be used for such purposes provided that the limitations are obeyed. Future work will concern
development of true hp-adaptive strategies and optimal continuum 3-D-based formulations for the
constrained cases addressed herein, for example, the possibility of improving the matrix condition
number by using anisotropic p-extensions. Also, issues of better-conditioned interpolation functions
are a topic for future research.
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Appendix A. The Navier exact 3-D solution for laminates

The exact frequency domain formulation of an orthotropic a � b laminate which has
displacement field u, symmetric stresses ~sij ¼ ~sji and strain ~�kl ¼ ~�lk tensor field in each point in
the body x ¼ ½x1 x2 x3�

T; given in Cartesian coordinate, is used to investigate the convergence
properties of h- and p-version FEM. The frequency domain Navier’s equation of motion, where
s ¼ i2pf ; i2 ¼ �1 and f is the current frequency of vibration, is given by

�div ~sþ s2 r~u ¼ 0, (A.1)

where solid viscoelastic constitutive behaviour is modelled in the frequency domain by using the
elasto-viscoelastic correspondence principle ~s ¼ C1 þ CaðsÞ½ � : ~�; with the stress–strain relation
given as ~�ð~uÞ ¼ ðr � ~uÞT þr� ~u

� �
=2:

Finally, simply supported boundary conditions are introduced at the four edges, that is, at
x1 ¼ 0 and a: fu2 u3 s11g ¼ 0; and at x2 ¼ 0 and b: fu1 u3 s22g ¼ 0 for all x3: Traction-free
boundary condition on the bounding planes of the laminate in the case of eigenvalue analysis and
s33a0 in the case of vibration response due to an applied force in the vertical x3 direction. Each
ply has a thickness of hk:
The ansatz for ply k in the laminate satisfying all conditions above is given as

~ukðx; tÞ ¼
X1
m¼1

X1
n¼1

ck
mnðxÞ cosðotÞ

¼
X1
m¼1

X1
n¼1

Uk
mnðx3Þ cosðamx1Þ sinðbmx2Þ

Vk
mnðx3Þ sinðamx1Þ cosðbmx2Þ

W k
mnðx3Þ sinðamx1Þ sinðbmx2Þ

2
664

3
775 cosðotÞ; ðA:2Þ

where ~ukðx; tÞ ¼ ~uk
1 ~uk

2 ~uk
3

� �T
; ck

mnðxÞ are the generalised modal Fourier coefficients and am ¼ mp=a
and bm ¼ np=b: By substitution of the ansatz into the equation of motion for the k laminate and
introducing a set of state variables, a system of six coupled first-order ordinary differential
equations is given as

dZkðx3Þ

dz
¼ AkZkðx3Þ,

where

Zk ¼ Uk
mn

dUk
mn

dz
Vk

mn
dVk

mn

dz
W k

mn
dW k

mn

dz

h iT
, (A.3)

where the coefficient matrix Ak is defined in Ref. [33]. The general solution is given by

Zk ¼ UkQk �hk=2px3phk=2
� �

Bk, (A.4)

where the matrix Uk and the diagonal matrix Qk contain the eigenvectors and eigenvalues
of the coefficient matrix Ak; respectively, and Bk the unknown coefficients of the k ply.
By forcing displacement continuity conditions and traction continuity conditions at each ply
interface of the laminate as DkZk ¼ Dkþ1Zkþ1; the frequency response, from a single
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uniformly distributed pressure load P on a rectangular area u � v; positioned at ðZ; xÞ; is then
given as [34]

KBN ¼
D1U1Q1 �h1=2

� �
S

DNUNQN hN=2
� �

" #
BN ¼ F, (A.5)

F ¼ 0 16P
p2 mnuv

sin mp x
a

� �
sin np Z

b

� �
sin mp u

2a

� �
sin mp v

2a

� �
0 0 0 0

h iT
, (A.6)

where S is a transfer matrix between top and bottom ply, B1 ¼ SBN : For determination of the
laminate’s natural frequencies, the singular values of the system matrix K are determined.
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[29] B. Andersson, U. Falk, R. Jarlås, Self-adaptive FE-analysis of solid structures, Part I: element formulation and a

posteriori error estimation, FFA TN 1986-27, The Aeronautical Research Institute of Sweden (FFA), Stockholm,

64pp, 1986.

[30] A.G. Peano, et al., Adaptive approximations in finite element structural analysis, Computers & Structures 10 (1979)

333–342.

[31] B.A. Szabo, A.G. Peano, Hierarchic finite elements, Report WU/CCM-83/1, Washington University, St. Louis,

1983.

[32] B.A. Szabo, G.J. Sahrmann, Hierarchic plate and shell models based on p-extension, International Journal for

Numerical Methods in Engineering 26 (1988) 1855–1881.

[33] A. Nosier, R.K. Kapania, J.N. Reddy, Free vibration analysis of plates using a layerwise theory, AIAA Journal 31

(12) (1993) 2335–2346.

[34] S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill International, Singapore,

1959.
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